Risk Analysis in Radiation Protection

Françoise Malchair
Medical Physicist
francoise.malchair@zephyra.be
GBS 21/09/2019
Conclusions

• We need X-rays
• They’re a risk among others
• We should use protective and monitoring devices
• We should spare patients skin and monitor their radiation doses
Risk analysis

• Which risks?

• For whom?
Risk analysis identifies dangers or risk factors, then analyses the exposure conditions (of workers or patients) to these dangers or risk factors. It tries to be aware, as much and as precisely as possible, risks to be taken into account and to implement efficient mechanisms to eliminate the risks, as foreseen by the general precautionary principles.
Gestion des risques

Avant
- Prédiction des risques

Pendant
- Optimisation des pratiques

Après l’intervention
- Gestion des risques à postérieuri
- Mise en place d’un suivi médical personnalisé du patient
Risks in IR

- Contrast agents
- Infections
- Dissections
- Bleeding
- Cardiac arrest, stroke
- Ionising radiation
Patient risks
Deterministic skin effects

Skin Injuries from Fluoroscopically Guided Procedures: Part 1, Characteristics of Radiation Injury

Titus R. Koenig¹, Detlev Wolff², Fred A. Mettler³, Louis K. Wagner¹

Interventional procedures in radiology and cardiology often involve high radiation doses to patients’ skin. The potential for skin injury was discussed in 1994 [1]. More than 70 injuries have been reported in the referenced literature during the last decade or are known through other reported skin damage and known patterns of progression to assist physicians in the recognition of these injuries. We also identify factors that can help improve patient care.

Fundamental Facts About Skin Injury

Skin changes such as erythema, ulcers,

Skin Injuries from Fluoroscopically Guided Procedures: Part 2, Review of 73 Cases and Recommendations for Minimizing Dose Delivered to Patient

Titus R. Koenig¹, Fred A. Mettler², Louis K. Wagner¹

The benefits of fluoroscopically guided interventional procedures are reflected in the increasing number of interventions that are performed each year. In 1996, more than 700,000 interventional procedures were performed in the United States. Case Reports

The site of the skin injury depends on the type of procedure and corresponds in all cases to the beam entrance site. The site of injury is on the back when the tube is in a posteroanterior projection (e.g., transjugular intrahepatic...
Types of procedures associated with severe injuries

Coronary Angioplasty
 Courtesy F Mettler MD

Radiofrequency Ablation
 Vañó, Br J Radiol 1998; 71, 510 - 516

TIPS placement

Uterine embolization
 Courtesy: Shope, FDA

Renal angioplasty
 Dandurand et al, Ann Derm Vener 1999; 126: 413-417

Neuroembolization

 Courtesy: Shope, FDA
Radiation-Induced Skin Injuries to Patients: What the Interventional Radiologist Needs to Know

Werner Jaschke, Matthias Schmuth, Annalisa Trianni, and Gabriel Bartal

Abstract

For a long time, radiation-induced skin injuries were only encountered in patients undergoing radiation therapy. In diagnostic radiology, radiation exposures of patients causing skin injuries were extremely rare. The introduction of fast multislice CT scanners and fluoroscopically guided interventions (FGI) changed the situation. Both methods carry the risk of excessive high doses to the skin of patients resulting in skin injuries. In the early nineties, several reports of epilation and skin injuries following CT brain perfusion studies were published. During the same time, several papers reported skin injuries following FGI, especially after percutaneous coronary interventions and neuroembolisations. Thus, CT and FGI are of major concern regarding radiation safety since both methods can apply doses to patients exceeding 5 Gy (National Council on Radiation Protection and Measurements threshold for substantial radiation dose level). This paper reviews the problem of skin injuries observed after FGI. Also, some practical advices are given how to effectively avoid skin injuries. In addition, guidelines are discussed how to deal with patients who were exposed to a potentially dangerous radiation skin dose during medically justified interventional procedures.

Keywords: Interventional radiology, Radiation, Skin injuries
PRACTICAL MATTER ARTICLE

Lessons from two cases of radiation induced skin injuries in fluoroscopic procedures in Bulgaria

D Kostova-Lefterova1,2, J Vassileva3 and M M Rehani4
Published 15 November 2017 • © 2017 IOP Publishing Ltd
Journal of Radiological Protection, Volume 37, Number 4

Abstract

Background: Radiation-induced injuries to patient skin as a result of fluoroscopy guided interventional procedures are infrequently reported, often misdiagnosed and there is a need to learn lessons from every injury. Methods: This paper describes two cases of radiation induced skin injuries that are, to the best of our knowledge, the first ever reported cases from Bulgaria and possibly from Eastern Europe, and would thus have educational value. Results: The important messages from the skin injuries reported here are: lack of awareness among part of the interventional specialists about the potential for radiation induced skin injury, misdiagnosis after injury happened because of lack of awareness and knowledge among general physicians, dermatologists and surgeons who followed up cases of skin injuries; the lack of system to monitor patients with relatively high exposure; the important role played by the medical physicist in diagnosing the injury and overall in initiating actions; the role of training and informational material displayed in interventional facilities. Conclusions: For avoidance of skin injuries from interventional procedures it is of utmost importance to implement a system that includes (a) regular monitoring of radiation dose parameters of the procedure; (b) established trigger values for reporting; (c) procedure for patient follow-up if a trigger value is exceeded; (d) instructing the patient who has received exposure above the trigger value to self-examine the irradiated area of the skin for any itching/redness and report it back.
Diagnostic and therapeutic radiological investigations are an essential part of the workup of patients with a number of clinical problems across a variety of medical specialties. Although new non-x ray technologies have started to replace traditional investigations these have not lead to a reduction in radiation exposure. In contrast, based on global statistics and projections, radiation exposure of patients is increasing, in particular as a result of new indications and use in cross sectional imaging.\(^1\) In addition, multiple investigations of patients with chronic disease can lead to substantial individual radiation exposure as surgical practice increasingly relies on the use of cross sectional imaging to aid diagnosis and treatment.\(^2\) New imaging techniques, in particular computed tomography (CT) colonography, have become attractive alternatives to conventional colonoscopy.\(^3\) However, the necessity for both prone and supine scanning means that radiation exposure is double that of a conventional abdominal scan which can lead to a theoretical increase in the risk of exposure related cancer and death.\(^4\)
Cancer risks from diagnostic radiology

E J HALL, DPhil, DSc, FACR, FRCR and D J BRENNER, PhD, DSc

Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA

ABSTRACT. In recent years, there has been a rapid increase in the number of CT scans performed, both in the US and the UK, which has fuelled concern about the long-term consequences of these exposures, particularly in terms of cancer induction. Statistics from the US and the UK indicate a 20-fold and 12-fold increase, respectively, in CT usage over the past two decades, with per caput CT usage in the US being about five times that in the UK. In both countries, most of the collective dose from diagnostic radiology comes from high-dose (in the radiological context) procedures such as CT, interventional radiology and barium enemas; for these procedures, the relevant organ doses are in the range for which there is now direct credible epidemiological evidence of an excess risk of cancer, without the need to extrapolate risks from higher doses. Even for high-dose radiological procedures, the risk to the individual patient is small, so that the benefit/risk balance is generally in the patients' favour. Concerns arise when CT examinations are used without a proven clinical rationale, when alternative modalities could be used with equal efficacy, or when CT scans are repeated unnecessarily. It has been estimated, at least in the US, that these scenarios account for up to one-third of all CT scans. A further issue is the increasing use of CT scans as a screening procedure in asymptomatic patients; at this time, the benefit/risk balance for any of the commonly suggested CT screening techniques has yet to be established.
Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study

Mark S Pearce, Jane A Salotti, Mark P Little, Kieran McHugh, Choonsik Lee, Kwang Pyo Kim, Nicola L. Howe, Cecile M Ronckers, Preetha Rajaraman, Alan W Craft, Louise Parker, and Amy Berrington de González

Summary

Background

Although CT scans are very useful clinically, potential cancer risks exist from associated ionising radiation, in particular for children who are more radiosensitive than adults. We aimed to assess the excess risk of leukaemia and brain tumours after CT scans in a cohort of children and young adults.
In France (IRSN)

Nombre d’ESR entre 2007 et 2016

N = 127

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>20</td>
<td>26</td>
<td>22</td>
</tr>
</tbody>
</table>
2 centers - Belgium

> 5000 mGy AK@IRP

- 2018
 - 4 cases (IC)

- 2019
 - 9 cases (Neuro-IC-EVAR)
 - 7 cases (TIPS-IC)
Nombre de cas dépassant les alertes par année (CAATS) - 9 centres
Nombre de cas dépassant les alertes, par année et par seuil d’AK (CAATS)
Staff risks
Staff risks?

© 2005 by the American Academy of Orthopaedic Surgeons

Occupational Radiation Exposure to the Surgeon

Gordon Singer, MD, MS

Reprint requests: Dr. Singer, Kaiser Permanente, 2045 Franklin Street, Denver, CO 80205.

Abstract

Increased use of intraoperative fluoroscopy exposes the surgeon to significant amounts of radiation. The average yearly exposure of the public to ionizing radiation is 360 millirems (mrem), of which 300 mrem is from background radiation and 60 mrem from diagnostic radiographs. A chest radiograph exposes the patient to approximately 25 mrem and a hip radiograph to 500 mrem. A regular C-arm exposes the patient to approximately 1,200 to 4,000 mrem/min. The surgeon may receive exposure to the hands from the primary beam and to the rest of the body from scatter. Recommended yearly limits of radiation are 5,000 mrem to the torso and 50,000 mrem to the hands. Exposure to the hands may be higher than previously estimated, even from the mini C-arm. Potential decreases in radiation exposure can be accomplished by reduced exposure time; increased distance from the beam; increased shielding with gown, thyroid gland cover, gloves, and glasses; beam collimation; using the low-dose option; inverting the C-arm; and surgeon control of the C-arm.
Lens opacities observed in

- 1/3rd to ½ main operators
- 1/4th to 1/3rd Nurses

- Lens of the eye, threshold in absorbed dose is now considered to be 0.5 Gy (against 0.5 to 2 for detectable opacities and 5 for visual impairment).

- Occupational Exposure Lens of Eye Limit
 - 20 mSv in a y (against 150), averaged over defined periods of 5 y, with no single y exceeding 50 mSv
Radiation exposure and the urologist: what are the risks?
Hellawell GO, Mutch SJ, Thervendran G, Wells E, Morgan RJ.

Abstract

PURPOSE: Endourology is established in urology practice with routine use of fluoroscopic guidance. Medical personnel are rarely exposed to direct radiation exposure but secondary exposure occurs via radiation scatter. There are few reports on scatter radiation exposure and the subsequent risk to medical personnel involved in urological fluoroscopic procedures. We review the risks of scatter radiation exposure to medical personnel with reference to the routine use of fluoroscopic imaging in urological practice.

MATERIALS AND METHODS: We measured staff radiation exposure during a series of ureteral endourological procedures using LiF:Mg,Ti thermoluminescent dosimeters placed at the extremities of the operating surgeon, the assistant and the scrub nurse. Doses for percutaneous nephrolithotomy (PCNL) procedures were calculated by extrapolating from the ureteral procedure thermoluminescent dosimeter data. Theoretical scattered radiation dose rates were also calculated.

RESULTS: The average ureteral procedure fluoroscopy time was 78 seconds with an exposure rate of 71 kV, 2.4 mA. The surgeon received the highest radiation exposure with the lower leg (11.6 +/- 2.7 microGy) and foot (6.4 +/- 1.8 microGy) receiving more radiation than the eyes (1.9 +/- 0.5 microGy) and hands (2.7 +/- 0.7 microGy). For a predicted annual caseload of 50 ureteral cases, the dose received does not exceed 0.12% of the Ionising Radiations Regulations 1999 annual dose limit for adult workers. Radiation exposure during PCNLs is higher but does not exceed 2% of the annual dose limits even if 50 PCNLs are performed annually.

CONCLUSIONS: Fluoroscopic screening results in radiation exposure of medical personnel. The estimate of maximum scatter radiation exposure to the surgeon for 50 PCNL procedures a year did not exceed 10 mGy. This amount is less than 2% of permissible annual limits of equivalent dose to the extremities. Medical personnel should be aware of scatter radiation risks and minimize radiation exposure when involved in fluoroscopic screening procedures.
Radiation Exposure to the Urologist Using an Overcouch Radiation Source Compared With an Undercouch Radiation Source in Contemporary Urology Practice

Andrew M. Harris
Department of Urology, University of Kentucky Medical Center, Lexington, KY

Abstract

Objective
To compare radiation dosage to the urologist using an overcouch system, x-ray tube over table, and an undercouch system, x-ray tube under table. Urologists continue to perform more endoscopic surgery requiring fluoroscopy. Fluoroscopy, or electromagnetic radiation, can cause cellular damage when passing through tissues. These systems are compared with respect to radiation dosage to the urologist.

Methods
A single urologic surgeon utilized a dosimeter badge while using an overcouch system. The dosimeter exposure was higher than expected and an undercouch system was then employed. Dosimeter exposure levels between the overcouch and the undercouch systems were examined and compared.

Results
Over the 4 months reviewed for the overcouch system, radiation doses to the body averaged 3.63mSv, those to the eye averaged 3.73mSv, and those to the extremities averaged 3.72mSv. The 3-month averages for the undercouch system exposure to the body, the eye, and the extremities were 0.31, 0.35, and 0.35mSv, respectively. The difference in radiation exposure between the 2 systems was significant (P<.001). The average number of radiation cases between the 2 systems was not significantly different (P=.37). The average fluoroscopy time for the procedures between the 2 systems was not significantly different (P=.24).

Conclusion
Overcouch fluoroscopy systems expose the urologist to significantly higher, potentially dangerous levels of radiation. Urologists using an overcouch system should strongly consider as low as reasonably achievable precautions and proper utilization of lead aprons, thyroid shields, and lead glasses. Radiation safety training should be considered.
Gastroenterology Research and Practice
Volume 2013 (2013), Article ID 587574, 7 pages
http://dx.doi.org/10.1155/2013/587574

Clinical Study

Optimisation of Radiation Exposure to gastroenterologists and Patients during Therapeutic ERCP

Khalid Alzimami,1 Abdelmoneim Suleiman,2 Georgios Paroutoglou,3 Spiros Potamianos,4 Marianna Vlychou,5 and Kiki Theodorou6

1Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
2Radiology and Medical Imaging Department, College of Applied Medical Sciences, Salman bin Abdulaziz University, P.O. Box 422, Al-khair 11942, Saudi Arabia
3Public Gastroenterology Department, University Hospital of Larissa, P.O. Box 1425, 41110 Larissa, Greece
4University Gastroenterology Department, University Hospital of Larissa, P.O. Box 1425, 41110 Larissa, Greece
5Radiology Department, University Hospital of Larissa, P.O. Box 1425, 41110 Larissa, Greece
6Medical Physics Department, University Hospital of Larissa, P.O. Box 1425, 41110 Larissa, Greece

Received 12 November 2012; Revised 18 January 2013; Accepted 4 February 2013

Academic Editor: Stuart Sherman

Copyright © 2013 Khalid Alzimami et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This study intended to optimize the radiation doses for gastroenterologists and patients during therapeutic endoscopic retrograde cholangiopancreatography (ERCP) and to compare the doses based on available data obtained by other researchers. A total of 153 patients were studied in two Gastroenterology Departments, (group A, 111; group B, 42). Thermoluminescent dosimeters (TLD) were used to measure the staff and patients entrance surface air kerma (ESAK) at different body sites. The mean ESAK and effective doses per procedure were estimated to be 68.75 mGy and 2.74 mSv, respectively. Staff was exposed to a heterogenous doses. The third examiner (trainee) was exposed to a high dose compared with other examiners because no shield was located to protect him from stray radiation. Patients and examiners doses were lower compared to the lowest values found in previous studies taking into consideration the heterogeneity of patients and equipment. Staff doses during ERCP are within the safety limit in the light of the current practice.
Optimisation of Radiation Exposure to Gastroenterologists and Patients during Therapeutic ERCP

Khalid Alzimami, 1 Abdelmoneim Suliman, 2 * Georgios Paroutoglou, 3 Spiros Potamianos, 4 Marianna Vlychou, 5 and Kiki Theodorou 6

Abstract

This study intended to optimize the radiation doses for gastroenterologists and patients during therapeutic endoscopic retrograde cholangiopancreatography (ERCP) and to compare the doses based on available data obtained by other researchers. A total of 153 patients were studied in two Gastroenterology Departments, (group A, 111; group B, 42). Thermoluminescent dosimeters (TLD) were used to measure the staff and patients entrance surface air kerma (ESAK) at different body sites. The mean ESAK and effective doses per procedure were estimated to be 68.75 mGy and 2.74 mSv, respectively. Staff was exposed to a heterogenous doses. The third examiner (trainee) was exposed to a high dose compared with other examiners because no shield was located to protect him from stray radiation. Patients and examiners doses were lower compared to the lowest values found in previous studies taking into consideration the heterogeneity of patients and equipment. Staff doses during ERCP are within the safety limit in the light of the current practice.
Radiation safety for anesthesiologists.

Dagal A¹.

Abstract

PURPOSE OF REVIEW: To review the recent literature on the implications of occupational radiation exposure in anesthesia practice.

RECENT FINDINGS: Wide variation and lack of reduction must be paid to the factors influencing radiation dose. Radiation-related cataract formation might be a stochastic effect of medical radiation ophthalmic dose limits are currently significant risk to the fetus for pregnant women working in healthcare facilities. Safety measures are implemented.

SUMMARY: Radiation is increasingly utilized in medicine and exposed to unsafe doses while providing high-quality exposure, the potential risks, and safe practices help in anesthesia team.

Risk and safety concerns in anesthesia practice: The present perspective

Sukhinderjit Singh Bajwa, Jasbir Kaur
Department of Anaesthesiology and Intensive Care, Gian Sagar Medical College and Hospital, Ram Nagar, Banur, Punjab, India

Date of Web Publication 14-Nov-2012

Correspondence Address:
Sukhinderjit Singh Bajwa
Department of Anaesthesiology and Intensive Care, Gian Sagar Medical College and Hospital, Ram Nagar, Banur, Punjab India

DOI: 10.4103/0259-1162.103365

Newer developments and advancements in anesthesia, surgical, and medical fields have widened the functional scope of anesthesiologist thus increasing his professional responsibilities and obligations. While at workplace, anesthesiologist is exposed to a wide array of potential hazards that can be detrimental to his overall health. Numerous risks and safety concerns have been mentioned in the literature, but the magnitude of challenges in anesthesia practice are far greater than those cited and anticipated. Many times these challenging situations are unavoidable and the attending anesthesiologist has to deal with them on an individual basis. These hazards not only affect the general health but can be extremely threatening in various other ways that can increase the potential risks of morbidity and mortality. This article is an attempt to bring a general awareness among anesthesia fraternity about the various health hazards associated with anesthesia practice. Also, a genuine attempt has been made to enumerate the various preventive methods and precautions that should be adopted to make practice of anesthesia safe and smooth.

Wang RR¹, Kumar AH², Tanaka P³, Macario A³.

Abstract

Anesthesia providers are frequently exposed to radiation during routine patient care in the operating room and remote anesthetizing locations. Eighty-two percent of anesthesiology residents (n = 57 responders) at our institution had a "high" or "very high" concern about the level of ionizing radiation exposure, and 94% indicated interest in educational materials about radiation safety. This article highlights key learning points related to basic physical principles, effects of ionizing radiation, radiation exposure measurement, occupational dose limits, considerations during pregnancy, sources of exposure, factors affecting occupational exposure such as positioning and shielding, and monitoring. The principle source of exposure is through scattered radiation as opposed to direct exposure from the X-ray beam, with the patient serving as the primary source of scatter. As a result, maximizing the distance between the provider and the patient is of great importance to minimize occupational exposure. Our dosimeter monitoring project found that anesthesiology residents (n = 41) had low overall mean measured occupational radiation exposure. The highest deep dose equivalent value for a resident was 0.50 mSv over a 3-month period, less than 10% of the International Commission on Radiological Protection occupational limit, with the eye dose equivalent being 0.52 mSv, approximately 4% of the International Commission on Radiological Protection recommended limit. Continued education and awareness of the risks of ionizing radiation and protective strategies will reduce exposure and potential for associated sequelae.

KEYWORDS: cardiac anesthesia; monitoring; noncardiac surgery; research; risk management
A 5-Year Retrospective Analysis of Exposure to Ionizing Radiation by Neurosurgery Residents in the Modern Era.

Zaidi HA¹, Montoure A¹, Nakaji P¹, Rice A², Tumialán LM³.

Abstract

BACKGROUND: The potential for radiation exposure during neurosurgical training has increased dramatically in the last decade. Incorporation of instrumented and minimally invasive spinal surgery and neuroendovascular procedures into the curriculum has led to increased potential for exposure to ionizing radiation. Contemporary neurosurgery residents' exposure to radiation has not been previously reported.

OBJECTIVE: To determine neurosurgery residents' exposure to radiation over the course of 7 years of training.

METHODS: Retrospective analysis of a prospectively maintained radiation database from July 2009 to July 2014 for all neurosurgery residents based on radiation dosimetry data. Standard radiation safety precautions were used (e.g., lead gowns or aprons), although compliance was not specifically monitored.

RESULTS: Thirty-eight neurosurgery residents were monitored from 2009 to 2014. Radiation exposure data were available for 34 residents for the final analysis. A total of 20,541 days of radiation monitoring data were available. The mean deep dose equivalent over this period was 0.67 ± 0.75 mrem per resident/day. The calculated maximum cumulative exposure during the course of residency training was 12.15 ± 13.50 mSv, approximately equivalent to 6 computed tomography head scans.

CONCLUSIONS: To our knowledge, this study is the first to quantify radiation exposure for neurosurgery residents in the current era of training. From this work, efforts may be initiated to increase awareness and safety with regard to radiation exposure. Although the total dose is not high, a better understanding of the impact of radiation exposure on practitioners may help to drive institutional policies to reduce occupational exposure.
Hazards of Ionizing Radiation and its Impact on Spine Surgery

Uri P. Hadelsberg, Ran Harel

DOI: https://doi.org/10.1016/j.wneu.2016.05.025

Abstract

Background
Spine surgery relies heavily on imaging, with radiography-based devices being the major operating room imaging modality. Radiation exposure is an occupational risk historically recognized shortly after the discovery of radiation itself. Exposure of both patients and operating room staff is of increasing concern as the knowledge regarding the hazards of radiation is steadily accumulating.

Methods
We conducted a literature review of the history of radiation exposure limits and updates on current studies showing the risks of low-dose exposures.

Results
Multiple studies reporting on radiation exposure risk and methods to reduce exposure risks are discussed.

Conclusion
We discuss the methods to reduce operating room staff exposure to the minimal amount, thus reducing occupational risks. We recognize that increasing awareness to radiation exposure hazards and promoting the knowledge of methods to reduce exposure of surgeons, nurses, and technicians could result in a reduction of exposure to radiation.
Radiation exposure to the orthopaedic surgeon during periacetabular osteotomy

Inger Mechlenburg, Henrik Daugaard, and Kjeld Søballe

Abstract

The objective of this study was to directly measure the radiation exposure to the orthopaedic surgeon and to measure dose points to the surgeon’s fingers, thyroid gland, and forehead during intraoperative fluoroscopy in periacetabular osteotomy (PAO). In a series of 23 consecutive periacetabular osteotomy procedures, exposure monitoring was carried out using thermo luminescent dosimeters. The effective dose received by the operating surgeon was 0.008 mSv per operation which adds up to a yearly dose of 0.64 mSv from PAO. The median point equivalent dose (mSv) exposure under PAO was 0.009 for the forehead and thyroid gland, 0.045 for the right index finger, and 0.039 for the left index finger. The effective estimated yearly dose received by the operating surgeon was very low. Wearing a lead collar reduces radiation exposure to the thyroid gland while the lead gloves did not protect the surgeon’s fingers.
Radiation risk amongst orthopaedic surgeons - Do we know the risk?

Gowda SR¹, Mitchell CJ², Abouel-Enin S³, Lewis C².

Abstract
Radiation risk amongst orthopaedic surgeons and theatre personnel is increasing with increased use of fluoroscopy imaging. Increased radiation risk has been shown to be associated with an increased risk of malignancies, ocular and thyroid disorders. Very high exposures have been reported in spinal surgery and during intra-medullary nailing. With an increase in modern and percutaneous methods, the use of intra-operative fluoroscopy has increased as well. The aim of this article was to review the available evidence of radiation risk amongst healthcare personnel. A systematic search was carried out in PubMed, CINAHL and Cochrane on intra-operative radiation in trauma and orthopaedic operating room. Inclusion criteria were clinical studies and systematic reviews reporting on radiation exposure, fluoroscopy time and references to specific safety guidelines. This article highlights the safety aspects of radiation protection and harmful effects of radiation during orthopaedic procedures. The responsibility to minimise radiation exposure in operating theatre lies with the team within the operating room.

KEYWORDS: Radiation risk / Orthopaedic procedures / Radiation protection

Radiation Exposure and Health Risks for Orthopaedic Surgeons.

Hayda RA¹, Hsu RY, DePasse JM, Gil JA.

Abstract
Orthopaedic surgeons are routinely exposed to intraoperative radiation and, therefore, follow the principle of "as low as reasonably achievable" with regard to occupational safety. However, standardized education on the long-term health effects of radiation and the basis for current radiation exposure limits is limited in the field of orthopaedics. Much of orthopaedic surgeons’ understanding of radiation exposure limits is extrapolated from studies of survivors of the atomic bombings in Hiroshima and Nagasaki, Japan. Epidemiologic studies on cancer risk in surgeons and interventional proceduralists and dosimetry studies on true radiation exposure during trauma and spine surgery recently have been conducted. Orthopaedic surgeons should understand the basics and basis of radiation exposure limits, be familiar with the current literature on the incidence of solid tumors and cataracts in orthopaedic surgeons, and understand the evidence behind current intraoperative fluoroscopy safety recommendations.
Radiation hazards to **vascular surgeon and scrub nurse** in mobile fluoroscopy equipped hybrid vascular room

Jong Bin Kim, Jaehoon Lee, and Kihyuk Park

Abstract

Purpose

The aim of the present study was to identify the radiation hazards to vascular surgeons and scrub nurses working in mobile fluoroscopy equipped hybrid vascular operation rooms; additionally, to estimate cumulative cancer risk due to certain exposure dosages.

Methods

The study was conducted prospectively in 71 patients (53 men and 18 women) who had undergone vascular intervention at our hybrid vascular theater for 6 months. OEC 9900 fluoroscopy was used as mobile C-arm. Exposure dose (ED) was measured by attaching optically stimulated luminescence at in and outside of the radiation protectors. To measure X-ray scatter with the anthropomorphic phantom model, the dose was measured at 3 distances (20, 50, 100 cm) and 3 angles (horizontal, upward 45°, downward 45°) using a personal gamma radiation dosimeter, Ecotest CARD DKG-21, for 1, 3, 5, 10 minutes.

Results

Lifetime attributable risk of cancer was estimated using the approach of the Biological Effects of Ionizing Radiation report VII. The 6-month ED of vascular surgeons and scrub nurses were 3.85, 1.31 mSv, respectively. The attenuation rate of lead apron, neck protector and goggle were 74.6%, 60.6%, and 70.1%, respectively. All cancer incidences among surgeons and scrub nurses correspond to 2,355 and 795 per 100,000 persons. The 10-minute dose at 100-cm distance was 0.004 mSv at horizontal, 0.009 mSv at downward 45°, 0.003 mSv at upward 45°.

Conclusion

Although yearly radiation hazards for vascular surgeons and scrub nurses are still within safety guidelines, protection principles can never be too stringent when aiming to minimize the cumulative harmful effects.
Occupational radiation exposure: How much should I worry?

Christopher G Carsten III, Greenville Health System, Greenville, SC, USA

Radiation safety practices have made tremendous advances since the discovery of Roentgen's X-rays over 120 years ago. The sacrifices of early practitioners have led to the knowledge that now allows us to perform truly amazing therapies to the benefit of our patients. This knowledge, however, can also be beguiling. While we now know how this energy behaves and what we need to do to minimise our risk, we may assume that we have tamed its danger. "Time, Distance and Shielding" are simple concepts, so surely we as skilled and knowledgeable practitioners can easily apply these basic principles on a daily basis and be safe in our occupational environments, correct?
Radiation-Induced DNA Damage in Operators Performing Endovascular Aortic Repair

BACKGROUND: Radiation exposure during fluoroscopically guided interventions such as endovascular aortic repair (EVAR) is a growing concern for operators. This study aimed to identify markers in operators performing EVAR.

METHODS: Expression of the DNA damage response marker, phosphorylated γH2AX (γH2AX) and the DNA damage response marker, phospho-ATM (pATM), were quantified in circulating lymphocytes from operators during the peri-operative period. These markers were compared to those of normal, non-radiation-exposed individuals. Susceptibility to radiation damage was assessed in vitro.

RESULTS: γH2AX and pATM levels increased immediately after branched endovascular aortic repair (P<0.0003) compared to baseline. There was no increase in γH2AX expression after open repair. Leg protection abrogated γH2AX and pATM response after branched endovascular aortic repair. The expression of γH2AX varied significantly when operators' blood was exposed to the same radiation dose in vitro (P<0.0001).

CONCLUSIONS: This is the first study to detect acute radiation-induced DNA damage response in operators performing fluoroscopically guided aortic procedures and highlights the protective effect of leg shielding. Defining the relationship between this response and cancer risk may be better informed by studies of chronic low-dose radiation exposure.

Clinical Perspective

What Is New?

- This is the first study to detect acute radiation-induced DNA damage in operators who carried out endovascular aortic repair by demonstrating an increase in the expression of DNA damage/repair markers, γH2AX, and phosphorylated ataxia telangiectasia mutated in their circulating lymphocytes immediately after procedures.
- In vitro irradiation studies demonstrated that the DNA damage response may be attenuated by radiation protection with leg shielding.
- Wearing lower leg protective lead shielding is essential for reducing scatter radiation-induced DNA damage.
- The use of cellular markers, including γH2AX and phosphorylated ataxia telangiectasia mutated, which readily lend themselves to high-throughput sampling, may facilitate individual risk profiling, improve our understanding of the mechanisms involved in occupational radiation-induced mutagenesis, and define optimal protection strategies.
Radiation Risk in Residency: Is It Worth the Worry?

What Should a Pregnant Resident Do?

Many surgical trainees are in their childbearing years, and few have the opportunity to formally educate themselves on occupational radiation exposure. We found that the under-lead radiation dose is minimal during a typical vascular rotation that might be experienced by a resident or student. It would be prudent for residency programs and medical schools to provide information regarding radiation exposure and risk stratification. Trainees also must take it upon themselves to be informed and prepared.

On the basis of previous reports and our observational data, the risk for harmful radiation exposure to a trainee or fetus during a vascular surgery rotation is minimal and should not deter female trainees in their childbearing years from participating in complex endovascular cases that could enhance their training.

dose of 43 mrem, equivalent to a tissue depth of 1 cm applied to the whole body; an eye dose of 48 mrem, equivalent to a tissue depth of 0.3 cm to the eye lens; and a shallow dose of 49 mrem, equivalent to a tissue depth of 0.007 cm applied to the whole body, or skin dose. Dose under the lead garment was reported at levels below the limit of detection.
Objectives: To measure the radiation exposure of the operating team during endovascular aortic procedures, and to determine factors that predict high exposures.

Materials and methods: Electronic dosimeters placed over and under protective lead garments, were used to prospectively record radiation exposure during endovascular aortic repairs performed in a designated interventional radiology suite. Univariate and multivariate linear regression analyses of predictors of radiation exposure were performed.

Results: A total of 26 infra-renal and 10 thoracic endovascular cases were studied. Median (IQR) patient age and body mass index were 76.0 (70.0–81.8) years and 26.2 (23.9–28.9) kg/m2 respectively. Over-lead exposure to the operator was higher for thoracic than for infra-renal procedures (421.0 [233.8–597.8] µSv vs. 52.5 [27.8–179.8] µSv, $p = .0003$), reflecting a significant exposure to unprotected parts of the body. Under-lead exposures for operator and assistant were 5.5 (2.0–14.2) µSv and 1.0 (0.0–2.3) µSv respectively, which for an average caseload would comply with total body effective dose limits. Type of case and percentage of digital subtraction angiography (DSA) time in left anterior oblique angulations predicted dose to the operator ($p < .0001$).

Conclusions: Thoracic procedures, DSA runs and obliquity of the C-arm are strong predictors of radiation exposure during endovascular aortic repairs. Understanding scatter radiation dynamics and instigating measures to minimise radiation exposure should be mandatory.

© 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Article history: Received 27 February 2013, Accepted 29 May 2013, Available online 19 July 2013
Keywords: Occupational radiation exposure, Dosimetry, Endovascular, Aortic repair
Cancer Risks among Radiologists and Radiologic Technologists: Review of Epidemiologic Studies

Shinji Yoshinaga, PhD, Kiyohiko Mabuchi, MD, DrPH, Alice J. Sigurdson, PhD, Michele Morin Doody, MS, and Elaine Ron, PhD

1From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Md (S.Y., K.M., A.J.S., M.M.D., E.R.); and Research Center for Radiation Safety, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan (S.Y.). Received July 17, 2003; revision requested September 29; revision received November 7; accepted January 29, 2004. Address correspondence to S.Y. (e-mail: yosinaga@nirs.go.jp).

DOI: http://dx.doi.org/10.1148/radiol.2332031119

Radiologists and radiologic technologists were among the earliest occupational groups exposed to ionizing radiation and represent a large segment of the working population exposed to radiation from human-made sources. The authors reviewed epidemiologic data on cancer risks from eight cohorts of over 270,000 radiologists and technologists in various countries. The most consistent finding was increased mortality due to leukemia among early workers employed before 1950, when radiation exposures were high. This, together with an increasing risk of leukemia with increasing duration of work in the early years, provided evidence of an excess risk of leukemia associated with occupational radiation exposure in that period. While findings on several types of solid cancers were less consistent, several studies provided evidence of a radiation effect for breast cancer and skin cancer. To date, there is no clear evidence of an increased cancer risk in medical radiation workers exposed to current levels of radiation doses. However, given a relatively short period of time for which the most recent workers have been followed up and in view of the increasing uses of radiation in modern medical practices, it is important to continue to monitor the health status of medical radiation workers.
Brain tumours among **interventional cardiologists**: a cause for alarm? Report of four new cases from two cities and a review of the literature.

Roguin A¹, Goldste

Abstract

AIMS: Intervention could pose a health risk to interventional cardiologists, who are exposed to ionizing radiation during catheterisation laboratory procedures. Aims to assess the frequency and location of brain tumours in a population of interventional cardiologists compared with other specialties.

METHODS AND RESULTS: A literature search was performed for reports of brain tumours in interventional cardiologists. A review of all reports of interventional cardiologists and radiologists was undertaken. The authors identified 22 additional cases of brain tumours in interventional cardiologists, including 12 gliomas, 6 meningiomas, and 4 acoustic neuromas. The prevalence of brain tumours in interventional cardiologists was significantly higher than in the general population, with a risk ratio of 22.5 (95% CI 1.7-280.6).

CONCLUSIONS: Interventional cardiologists who work in the catheterisation laboratory are at increased risk of developing brain tumours. This risk may be related to the use of ionizing radiation during procedures. Further research is needed to determine the mechanisms underlying this increased risk and to develop strategies to mitigate this risk.

Note: The text has been partially redacted to maintain privacy.
Invasive Cardiologists Are Exposed to Greater Left Sided Cranial Radiation: The BRAIN Study (Brain Radiation Exposure and Attenuation During Invasive Cardiology Procedures).

Reeves RR, Ang L, Bahadorani J, Naghi J, Dominguez A, Palakodeti V, Tsimikas S, Patel MP, Mahmud E.

Abstract
OBJECTIVES: This study sought to determine radiation exposure across the cranium of cardiologists and the protective ability of a nonlead, XPF (barium sulfate/bismuth oxide) layered cap (BLOXR, Salt Lake City, Utah) during fluoroscopically guided, invasive cardiovascular (CV) procedures.

BACKGROUND: Cranial radiation exposure and potential for protection during contemporary invasive CV procedures is unclear.

METHODS: Invasive cardiologists wore an XPF cap with radiation attenuation ability. Six dosimeters were fixed across the outside and inside of the cap (left, center, and right), and 3 dosimeters were placed outside the catheterization lab to measure ambient exposure.

RESULTS: Seven cardiology fellows and 4 attending physicians (38.4 ± 7.2 years of age; all male) performed diagnostic and interventional CV procedures (n = 66.2 ± 27 cases/operator; fluoroscopy time: 14.9 ± 5.0 min). There was significantly greater total radiation exposure at the outside left and outside center (106.1 ± 33.6 mrad and 83.1 ± 18.9 mrad) versus outside right (50.2 ± 16.2 mrad; p < 0.001 for both) locations of the cranium. The XPF cap attenuated radiation exposure (42.3 ± 3.5 mrad, 42.0 ± 3.0 mrad, and 41.8 ± 2.9 mrad at the inside left, inside center, and inside right locations, respectively) to a level slightly higher than that of the ambient control (38.3 ± 1.2 mrad, p = 0.046). After subtracting ambient radiation, exposure at the outside left was 16 times higher than the inside left (p < 0.001) and 4.7 times higher than the outside right (p < 0.001). Exposure at the outside center location was 11 times higher than the inside center (p < 0.001), whereas no difference was observed on the right side.

CONCLUSIONS: Radiation exposure to invasive cardiologists is significantly higher on the left and center compared with the right side of the cranium. Exposure may be reduced similar to an ambient control level by wearing a nonlead XPF cap. (Brain Radiation Exposure and Attenuation During Invasive Cardiology Procedures [BRAIN]; NCT01910272).
Radiation safety in the cardiac catheterization lab: A time series quality improvement initiative.

Abuzeid W¹, Abunassar J², Leis JA³, Tang V⁴, Wong B⁵, Ko DT⁶, Wijeyasurya HC⁶.

Abstract

BACKGROUND: Interventional cardiologists have one of the highest annual radiation exposures yet systems of care that promote radiation safety in cardiac catheterization labs are lacking. This study sought to reduce the frequency of radiation exposure, for PCI procedures, above 1.5 Gy in labs utilizing a Phillips system at our local institution by 40%, over a 12-month period.

METHODS: We performed a time series study to assess the impact of different interventions on the frequency of radiation exposure above 1.5 Gy. Process measures were percent of procedures where collimation and magnification were used and percent of completion of online educational modules. Balancing measures were the mean number of cases performed and mean fluoroscopy time.

INTERVENTIONS: Information sessions, online modules, policies and posters were implemented followed by the introduction of a new lab with a novel software (AlluraClarity©) to reduce radiation dose.

RESULTS: There was a significant reduction (91%, p<0.05) in the frequency of radiation exposure above 1.5 Gy after utilizing a novel software (AlluraClarity©) in a new Phillips lab. Process measures of use of collimation (95.0% to 98.0%), use of magnification (20.0% to 14.0%) and completion of online modules (62%) helped track implementation. The mean number of cases performed and mean fluoroscopy time did not change significantly.

CONCLUSION: While educational strategies had limited impact on reducing radiation exposure, implementing a novel software system provided the most effective means of reducing radiation exposure.

Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

KEYWORDS: Cardiac catheterization; Quality improvement; Radiation safety
• Growing use and increasing complexity
 higher exposure to both patients and medical staff

 Now mostly decreasing through

• Education & Training

• Help from manufacturers
Type of equipment

C arm

mini C arm

O arm

ORTHOSCAN HD WITH FLAT DETECTOR

Image of C arm, O arm, and mini C arm equipment with examples of x-ray images.
Know your equipment

X-ray tube

Image detector
Know your equipment
Equipment: 2 types of detectors

Flat Panel detector Image Intensifier
There is a strong positive correlation between fluoroscopy time and radiation exposure and dose.

Change beam projections

Patient skin dose sparing

Increase SPD, decrease PDD

Patient skin dose sparing
Patient skin dose sparing

electronic magnification
Pulsed fluoroscopy

For constant signal to noise ratio (SNR)

Patient & staff dose sparing
Collimation to reduce exposure

FOV 15

dose reduction 25%
Positionnement virtuel de la collimation et/ou des filtres

- Manipulation des diaphragmes et des filtres sur la dernière image de scopie disponible
- Pas d’irradiation nécessaire
Antiscatter grid
Is lower-dose digital fluorography diagnostically adequate compared with higher-dose digital radiography for the diagnosis of fallopian tube stenosis?

Cardiovasc Intervent Radiol 23(2): 126-130, 2000
Monitoring of Radiation Exposure: staff

• **Main goals**
 – Compliance with dose limits \((E, H_{\text{skin}}, H_{\text{lens}})\)
 – Detection of unexpected exposure
 – Optimisation (mainly for fluoroscopy)

• **Standard method**
 – 1 dosemeter, under the apron
 – But: parts of body are not protected
Monitoring of Radiation Exposure:

staff

- **For dose-intensive fluoroscopy:**
 - 2 dosemeters, 1 under, 1 over the apron
 - Extremity ring dosemeters
 - Operational dosemeters
Monitoring of Radiation Exposure:

Patient dose indices

<table>
<thead>
<tr>
<th>Séquen.</th>
<th>Images</th>
<th>Heure</th>
<th>Procédure</th>
<th>Rotation</th>
<th>Angle</th>
<th>kV</th>
<th>mAs</th>
<th>ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54</td>
<td>11:30</td>
<td>Art. cor. gauche 15 Vs</td>
<td>-27</td>
<td>+24</td>
<td>85</td>
<td>630</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>11:41</td>
<td>Art. cor. gauche 15 Vs</td>
<td>-27</td>
<td>+24</td>
<td>87</td>
<td>616</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>11:43</td>
<td>Art. cor. gauche 15 Vs</td>
<td>-27</td>
<td>+24</td>
<td>90</td>
<td>598</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>11:43</td>
<td>Art. cor. gauche 15 Vs</td>
<td>0</td>
<td>-27</td>
<td>76</td>
<td>706</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>12:08</td>
<td>Art. cor. gauche 15 Vs</td>
<td>+1</td>
<td>-29</td>
<td>86</td>
<td>625</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>69</td>
<td>12:10</td>
<td>Art. cor. gauche 15 Vs</td>
<td>+1</td>
<td>-29</td>
<td>86</td>
<td>628</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>65</td>
<td>12:17</td>
<td>Art. cor. gauche 15 Vs</td>
<td>+1</td>
<td>-29</td>
<td>87</td>
<td>635</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>12:15</td>
<td>Art. cor. gauche 15 Vs</td>
<td>+1</td>
<td>-29</td>
<td>87</td>
<td>615</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>12:34</td>
<td>Ventricule gauche 30 Vs</td>
<td>+1</td>
<td>-29</td>
<td>90</td>
<td>560</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>12:36</td>
<td>Ventricule gauche 30 Vs</td>
<td>+1</td>
<td>-29</td>
<td>93</td>
<td>544</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>110</td>
<td>12:37</td>
<td>Ventricule gauche 30 Vs</td>
<td>+1</td>
<td>-29</td>
<td>95</td>
<td>533</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>108</td>
<td>12:38</td>
<td>Ventricule gauche 30 Vs</td>
<td>+39</td>
<td>-24</td>
<td>105</td>
<td>481</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>64</td>
<td>12:46</td>
<td>Ventricule gauche 30 Vs</td>
<td>+42</td>
<td>+4</td>
<td>88</td>
<td>574</td>
<td>7</td>
</tr>
</tbody>
</table>

Kerma d'air cumulé:

- 5766.37 mGy

PDS cumulé:

- 402312 mGycm²

Préfiltre expo sélectionné:

- 0.00 mm Cu + 0.00 mm Al

Préfiltre, scorie sélectionné:

- 0.10 mm Cu + 1.00 mm Al

Durée scopie:

- 49:28
<table>
<thead>
<tr>
<th>Mode Of Operation</th>
<th>Exposure Time (sec)</th>
<th>Exposure (mGy)</th>
<th>DAP (mGycm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoro</td>
<td>76.49</td>
<td>78.94</td>
<td>10711.65</td>
</tr>
<tr>
<td>High Level Fluoro</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>76.49</td>
<td>78.94</td>
<td>10711.65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>kVp</th>
<th>mAs</th>
<th>CTDI (mGy)</th>
<th>DLP (mGycm)</th>
<th>Phantom (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>
Direct measurements
Room lead protections
Same kind of effect with a moving door
Individual lead protections

lead glasses

lead googles
Individual lead protections
Individual lead protections
Keep detector close to patient.

Collimate.

Position shield in between patient and operator.

Radiation safety cap.

Radiation safety glasses (with side panels).

Lead skirt and vest with thyroid collar.

Movable lead skirt.

Disposable shielding.
Patient
- Increase table height.
- Vary beam angle.
- Keep extremities out of beam.
- Limit radiation usage.
- Decrease cine use.
- Minimize steep angles.
- Keep detector close to patient.
- Decrease frame rate.
- Use software magnification.
- Real time dose monitoring.
- Collimate.

Operator
- Protective garments.
- Increase distance from source.
- Optimize shielding.
- Keep body parts out of beam.
- Robotic cath lab.
Interventional Fluoroscopy
Reducing Radiation Risks for Patients and Staff

<table>
<thead>
<tr>
<th>Strategies to Manage Radiation Dose to Patients and Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMMEDIATE</td>
</tr>
<tr>
<td>OPTIMIZE DOSE TO PATIENT</td>
</tr>
<tr>
<td>Use proper radiologic technique:</td>
</tr>
<tr>
<td>- Maximize distance between x-ray tube and patient</td>
</tr>
<tr>
<td>- Minimize distance between patient and image receptor</td>
</tr>
<tr>
<td>- Limit use of electronic magnification</td>
</tr>
<tr>
<td>Control fluoroscopy time:</td>
</tr>
<tr>
<td>- Limit use to necessary evaluation of moving structures</td>
</tr>
<tr>
<td>- Employ last-image-hold to review findings</td>
</tr>
<tr>
<td>Control images:</td>
</tr>
<tr>
<td>- Limit acquisition to essential diagnostic and documentation purposes</td>
</tr>
<tr>
<td>Reduce dose:</td>
</tr>
<tr>
<td>- Reduce field size (collimate) and minimize field overlap</td>
</tr>
<tr>
<td>- Use pulsed fluoroscopy and low frame rate</td>
</tr>
<tr>
<td>Include medical physicist in decisions</td>
</tr>
<tr>
<td>- Machine selection and maintenance</td>
</tr>
<tr>
<td>Incorporate dose-reduction technologies and dose-measurement devices in equipment</td>
</tr>
<tr>
<td>Establish a facility quality improvement program that includes an appropriate x-ray equipment quality assurance program, overseen by a medical physicist, which includes equipment evaluation/inspection at appropriate intervals.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MINIMIZE DOSE TO OPERATORS AND STAFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep hands out of the beam</td>
</tr>
<tr>
<td>Use movable shields</td>
</tr>
<tr>
<td>Maintain awareness of body position relative to the x-ray beam:</td>
</tr>
<tr>
<td>- Horizontal x-ray beam – operator and staff should stand on the side of the image receptor.</td>
</tr>
<tr>
<td>- Vertical x-ray beam – the image receptor should be above the table</td>
</tr>
<tr>
<td>Wear adequate protection</td>
</tr>
<tr>
<td>- Protective well-fitted lead apron</td>
</tr>
<tr>
<td>- Leaded glasses</td>
</tr>
<tr>
<td>Improve ergonomics of operators and staff:</td>
</tr>
<tr>
<td>- Train operators and staff in ergonomically good positioning when using fluoroscopy equipment; periodically assess their practice</td>
</tr>
<tr>
<td>- Identify and provide the ergonomically best personal protective gear for operators and staff</td>
</tr>
<tr>
<td>- Urge manufacturers to develop ergonomically improved personal protective gear</td>
</tr>
<tr>
<td>- Recommend research to improve ergonomics for personal protective gear</td>
</tr>
</tbody>
</table>
Conclusions

• We need X-rays
• They’re a risk among others
• We should use protective and monitoring devices
• We should spare patients skin and monitor their radiation doses